

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-[(E)-4-Chlorobenzylidene]pyridine-4carbohydrazide monohydrate

Hoong-Kun Fun,^a*‡Wan-Sin Loh,^a§Divya N. Shetty,^b B. Narayana^b and B. K. Sarojini^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India Correspondence e-mail: hkfun@usm.mv

Received 21 June 2012; accepted 26 June 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.071; wR factor = 0.205; data-to-parameter ratio = 12.4.

The asymmetric unit of the title compound, $C_{13}H_{10}ClN_3O$ - H_2O , consists of two crystallographically independent Schiff base molecules which exist in an *E* conformation with respect to the C—N double bond, and two independent water molecules. In the crystal, the Schiff base and water molecules are linked into a three-dimensional network *via* N-H···O, O-H···N, O-H···O and C-H···O hydrogen bonds. The crystal studied was a pseudo-merohedral twin with twin law (101 010 001) and a component ratio of 0.792 (2):0.208 (2).

Related literature

For background to terphenyls, see: Naveenkumar *et al.* (2010); Chen (2006). For related structures, see: Fun, Quah, Shetty *et al.* (2012); Fun, Quah, Shyma *et al.* (2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data $C_{13}H_{10}CIN_{3}O\cdot H_{2}O$ $M_r = 277.71$ Monoclinic, $P2_1/c$ a = 14.1645 (7) Å b = 14.6276 (7) Å

c = 14.0817 (7) Å $\beta = 119.220 (2)^{\circ}$ $V = 2546.4 (2) \text{ Å}^{3}$ Z = 8Mo $K\alpha$ radiation

‡ Thomson Reuters ResearcherID: A-3561-2009. § Thomson Reuters ResearcherID: C-7581-2009. 20683 measured reflections

4458 independent reflections

3995 reflections with $I > 2\sigma(I)$

 $0.47 \times 0.26 \times 0.24 \text{ mm}$

 $R_{\rm int} = 0.043$

 $\mu = 0.30 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.871, T_{max} = 0.931$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.071 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.205 & \text{independent and constrained} \\ S &= 1.06 & \text{refinement} \\ 4458 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.80 \text{ e } \text{\AA}^{-3} \\ 360 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.55 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2A - H1NA \cdots O1WA$	1.00	1.88	2.838 (7)	160
$N2B - H1NB \cdots O1WB^{i}$	0.89	1.95	2.810 (7)	161
$O1WA - H1WA \cdots N1A^{ii}$	0.88 (9)	2.14 (8)	2.896 (7)	144 (6)
$O1WA - H2WA \cdots O1B^{iii}$	0.86 (10)	2.05 (9)	2.817 (6)	149 (9)
$O1WA - H2WA \cdots N3B^{iii}$	0.86 (10)	2.59 (10)	3.306 (6)	142 (8)
$O1WB - H2WB \cdots O1A^{iv}$	0.73 (9)	2.19 (8)	2.843 (6)	150 (8)
$O1WB - H1WB \cdot \cdot \cdot N1B^{iv}$	0.81 (9)	2.00 (9)	2.798 (6)	166 (11)
$C1A - H1AA \cdots O1WA$	0.95	2.49	3.321 (6)	146
$C1A - H1AA \cdots O1B^{iii}$	0.95	2.54	3.277 (7)	135
$C7A - H7AA \cdots O1WA$	0.95	2.46	3.247 (7)	141
$C1B - H1BA \cdots O1WB^{i}$	0.95	2.43	3.201 (7)	138
$C1B-H1BA\cdots O1A^{v}$	0.95	2.52	3.230 (8)	131

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y + 1, -z + 2; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (v) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the post as Research Officer under the Research University Grant (1001/PFIZIK/811160). BN thanks the UGC SAP for financial assistance for the purchase of chemicals. DNS thanks UGC– RFSMS scheme (under SAP-Phase1) for financial assistance and Mangalore University for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5159).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, S.-K. (2006). Acta Cryst. E62, 05352-05353.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Fun, H.-K., Quah, C. K., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, 01484.
- Fun, H.-K., Quah, C. K., Shyma, P. C., Kalluraya, B. & Vidyashree, J. H. S. (2012). Acta Cryst. E68, 02122.

Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, 01918–01919. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Spek, A. L. (2009). Acta Cryst. D**65**, 148–155.

supplementary materials

Acta Cryst. (2012). E68, o2303-o2304 [doi:10.1107/S1600536812029121]

N'-[(E)-4-Chlorobenzylidene]pyridine-4-carbohydrazide monohydrate

Hoong-Kun Fun, Wan-Sin Loh, Divya N. Shetty, B. Narayana and B. K. Sarojini

Comment

The pharmaceutical importance of isoniazid and its various derivatives are well documented and also the crystal structures of its Schiff base derivatives have been reported (Naveenkumar *et al.*, 2010; Chen, 2006). Hence, we report herein the synthesis and crystal structure of title compound. The Schiff base, N'-[(E)-(4-chlorophenyl)methylidene] pyridine-4-carbohydrazide, is synthesized by condensation of isoniazid with 4-chlorobenzaldehyde in absolute alcohol in presence of hydrochloric acid. The Schiff base crystallized out as a hydrate to form the title compound.

The asymmetric unit of the Schiff base compound, (Fig. 1), consists of two crystallographically independent N'-[(*E*)-(4-chlorophenyl)methylidene]pyridine-4-carbohydrazide molecules and two water molecules. The Schiff base molecules exist in an *E* configuration with respect to the C7A=N3A and C7B=N3B double bonds. The pyridine rings (C1A/C2A/N1A/C3A/C4A/C5A & C1B/C2B/N1B/C3B/C4B/C5B) are approximately planar with maximum deviations of 0.016 (6) Å at atom C4A and 0.012 (5) Å at atom C6B. Bond lengths and angles are within the normal ranges and are comparable with the related structures (Fun, Quah, Shetty *et al.*, 2012; Fun, Quah, Shyma *et al.*, 2012).

In the crystal packing (Fig. 2), the molecules are linked into a three-dimensional network *via* intermolecular N2A—H1NA···O1WA, N2B—H1NB···O1WB, O1WA—H1WA···N1A, O1WA—H2WA···O1B, O1WA—H2WA···N3B, O1WB —H2WB···O1A, C1A—H1AA···O1WA, C1A—H1AA···O1B, C7A—H7AA···O1WA, C1B—H1BA···O1WB, O1WB— H1WB···N1B and C1B—H1BA···O1A hydrogen bonds (Table 1).

Experimental

A mixture of isoniazid (1.4 g, 0.01 mol) and 4-chlorobenzaldehyde (1.4 g, 0.01 mol) in 15 ml of absolute alcohol containing 2 drops of hydrochloric acid was refluxed for about 3 h. Upon cooling, the solid was separated and was filtered and recrystallized from DMF. The Schiff base compound was crystallized out as a hydrate by slow evaporation in DMF. *M.P.*: 489 K.

Refinement

The N- and O-bound H atoms were located from a difference Fourier map. The O-bound H atoms were refined freely, whereas the N-bound H atoms were refined with a riding model with $U_{iso}(H) = 1.5 U_{eq}(N)$ [O—H = 0.73 (7) to 0.89 (8) Å; N—H = 0.89 and 1.00 Å]. The remaining H atoms were positioned geometrically and were refined with a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$. The crystal studied was a twin with twin law, 101 010 001 and BASF = 0.208 (2).

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2

The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

N'-[(E)-4-Chlorobenzylidene]pyridine-4-carbohydrazide monohydrate

Crystal data

C₁₃H₁₀ClN₃O·H₂O $M_r = 277.71$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.1645 (7) Å b = 14.6276 (7) Å c = 14.0817 (7) Å $\beta = 119.220$ (2)° V = 2546.4 (2) Å³ Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.871, T_{\max} = 0.931$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.071$	Hydrogen site location: inferred from
$wR(F^2) = 0.205$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
4458 reflections	and constrained refinement
360 parameters	$w = 1/[\sigma^2(F_o^2) + (0.123P)^2 + 5.736P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.80 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

F(000) = 1152

 $\theta = 2.8 - 29.9^{\circ}$

 $\mu = 0.30 \text{ mm}^{-1}$

Block, yellow

 $0.47 \times 0.26 \times 0.24$ mm

20683 measured reflections 4458 independent reflections

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$ $h = -16 \rightarrow 16$

3995 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.043$

 $k = -17 \rightarrow 13$

 $l = -16 \rightarrow 16$

 $D_{\rm x} = 1.449 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8764 reflections

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	l isotropic or e	quivalent isotropi	c displacement	parameters ($(Å^2)$)
-----------------------------------	------------------	--------------------	----------------	--------------	---------	---

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1A	0.07219 (10)	1.37835 (8)	0.59204 (11)	0.0295 (3)
O1A	0.1241 (3)	0.7654 (2)	0.6526 (3)	0.0223 (7)

N1A	0.4094 (3)	0.5253 (3)	0.7583 (3)	0.0237 (9)
H1NA	0.3567	0.8519	0.7510	0.035*
N2A	0.2758 (3)	0.8520 (3)	0.7089 (3)	0.0191 (8)
H1NB	0.1442	0.1632	0.8694	0.029*
N3A	0.2166 (3)	0.9323 (3)	0.6802 (3)	0.0206 (8)
C1A	0.4010 (4)	0.6845 (3)	0.7977 (4)	0.0222 (10)
H1AA	0.4371	0.7375	0.8380	0.027*
C2A	0.4562 (4)	0.6018 (3)	0.8149 (4)	0.0247 (11)
H2AA	0.5303	0.5994	0.8690	0.030*
C3A	0.3042 (4)	0.5298 (3)	0.6855 (4)	0.0233 (10)
H3AA	0.2700	0.4761	0.6454	0.028*
C4A	0.2420 (4)	0.6080 (3)	0.6647 (4)	0.0228 (10)
H4AA	0.1669	0.6073	0.6138	0.027*
C5A	0.2924 (4)	0.6874 (3)	0.7204 (4)	0.0188 (10)
C6A	0.2226 (4)	0.7718 (3)	0.6916 (4)	0.0179 (10)
C7A	0.2727 (4)	1.0055 (3)	0.6964 (4)	0.0213 (10)
H7AA	0.3488	1.0011	0.7256	0.026*
C8A	0.2212 (4)	1.0954 (3)	0.6706 (4)	0.0208 (10)
C9A	0.1071 (4)	1.1091 (3)	0.6206 (4)	0.0225 (11)
H9AA	0.0609	1.0574	0.6028	0.027*
C10A	0.0632 (4)	1.1930 (3)	0.5980 (4)	0.0230 (10)
H10A	-0.0130	1.2005	0.5646	0.028*
C11A	0.1303 (4)	1.2690 (3)	0.6241 (4)	0.0192 (10)
C12A	0.2426 (4)	1.2607 (3)	0.6729 (4)	0.0223 (10)
H12A	0.2875	1.3132	0.6904	0.027*
C13A	0.2864 (4)	1.1740 (3)	0.6951 (4)	0.0220 (10)
H13A	0.3627	1.1671	0.7278	0.026*
O1WA	0.4993 (3)	0.8952 (3)	0.8295 (4)	0.0354 (9)
Cl1B	0.42027 (11)	-0.36679 (8)	1.05982 (11)	0.0290 (3)
O1B	0.3756 (3)	0.2301 (2)	1.0041 (3)	0.0270 (8)
N1B	0.1149 (3)	0.4890 (3)	0.8468 (3)	0.0241 (9)
N2B	0.2152 (3)	0.1541 (3)	0.9120 (3)	0.0188 (8)
N3B	0.2689 (3)	0.0713 (3)	0.9449 (3)	0.0225 (9)
C1B	0.1096 (4)	0.3298 (3)	0.8844 (4)	0.0210 (10)
H1BA	0.0696	0.2791	0.8881	0.025*
C2B	0.0618 (4)	0.4152 (3)	0.8538 (4)	0.0211 (10)
H2BA	-0.0114	0.4220	0.8371	0.025*
C3B	0.2179 (4)	0.4770 (3)	0.8718 (4)	0.0231 (10)
H3BA	0.2562	0.5286	0.8673	0.028*
C4B	0.2721 (4)	0.3956 (3)	0.9034 (4)	0.0225 (10)
H4BA	0.3457	0.3915	0.9205	0.027*
C5B	0.2176 (4)	0.3195 (3)	0.9099 (4)	0.0192 (10)
C6B	0.2767 (4)	0.2306 (3)	0.9467 (4)	0.0179 (10)
C7B	0.2105 (4)	-0.0009(3)	0.9066 (4)	0.0214 (10)
H7BA	0.1351	0.0042	0.8576	0.026*
C8B	0.2620 (4)	-0.0915 (3)	0.9397 (4)	0.0213 (10)
C9B	0.3751 (4)	-0.1005 (4)	1.0003 (4)	0.0273 (11)
H9BA	0.4189	-0.0473	1.0168	0.033*
C10B	0.4230 (4)	-0.1829 (4)	1.0357 (4)	0.0258 (11)

H10B	0.4995	-0.1876	1.0767	0.031*	
C11B	0.3585 (4)	-0.2605 (3)	1.0112 (4)	0.0202 (10)	
C12B	0.2471 (4)	-0.2557 (3)	0.9494 (4)	0.0202 (10)	
H12B	0.2042	-0.3095	0.9315	0.024*	
C13B	0.1991 (4)	-0.1706 (3)	0.9140 (4)	0.0219 (10)	
H13B	0.1226	-0.1661	0.8719	0.026*	
O1WB	0.9892 (3)	0.1399 (3)	0.7853 (4)	0.0367 (10)	
H1WA	0.520 (6)	0.914 (5)	0.783 (6)	0.05 (2)*	
H2WA	0.551 (7)	0.876 (6)	0.890 (8)	0.08 (3)*	
H1WB	0.960 (7)	0.101 (6)	0.739 (7)	0.06 (3)*	
H2WB	0.955 (6)	0.155 (5)	0.808 (6)	0.04 (2)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1A	0.0284 (7)	0.0147 (6)	0.0418 (8)	0.0036 (5)	0.0143 (6)	-0.0003 (5)
01A	0.0173 (16)	0.0182 (18)	0.0292 (18)	0.0014 (13)	0.0097 (14)	0.0030 (14)
N1A	0.031 (2)	0.017 (2)	0.029 (2)	0.0044 (17)	0.0186 (19)	0.0044 (17)
N2A	0.0169 (19)	0.0136 (19)	0.025 (2)	0.0003 (16)	0.0090 (17)	0.0039 (16)
N3A	0.023 (2)	0.014 (2)	0.024 (2)	0.0019 (16)	0.0108 (17)	0.0050 (16)
C1A	0.028 (3)	0.015 (2)	0.023 (2)	0.000 (2)	0.013 (2)	0.0009 (19)
C2A	0.029 (3)	0.020 (2)	0.024 (2)	0.008 (2)	0.012 (2)	0.004 (2)
C3A	0.028 (3)	0.015 (2)	0.032 (3)	0.003 (2)	0.018 (2)	0.000 (2)
C4A	0.024 (3)	0.018 (2)	0.026 (3)	0.003 (2)	0.011 (2)	0.002 (2)
C5A	0.021 (2)	0.017 (2)	0.023 (2)	0.0025 (19)	0.0151 (19)	0.0068 (19)
C6A	0.020 (2)	0.016 (2)	0.019 (2)	0.0012 (18)	0.0097 (19)	0.0030 (18)
C7A	0.020 (2)	0.017 (2)	0.024 (2)	0.0002 (19)	0.009 (2)	0.004 (2)
C8A	0.031 (3)	0.012 (2)	0.021 (2)	-0.002 (2)	0.014 (2)	-0.0017 (19)
C9A	0.036 (3)	0.017 (2)	0.016 (2)	-0.014 (2)	0.013 (2)	-0.0015 (18)
C10A	0.023 (2)	0.023 (3)	0.024 (2)	-0.003(2)	0.012 (2)	-0.004 (2)
C11A	0.024 (2)	0.014 (2)	0.021 (2)	-0.0035 (18)	0.013 (2)	-0.0058 (18)
C12A	0.025 (2)	0.011 (2)	0.030 (3)	-0.0074 (19)	0.013 (2)	-0.0045 (19)
C13A	0.017 (2)	0.018 (2)	0.027 (2)	-0.0012 (19)	0.007 (2)	0.000 (2)
O1WA	0.0234 (19)	0.034 (2)	0.038 (2)	-0.0067 (17)	0.0060 (18)	0.0152 (18)
Cl1B	0.0340 (7)	0.0176 (6)	0.0350 (7)	0.0075 (5)	0.0164 (6)	0.0055 (5)
O1B	0.0162 (17)	0.024 (2)	0.0332 (19)	0.0029 (14)	0.0061 (15)	0.0080 (15)
N1B	0.029 (2)	0.015 (2)	0.026 (2)	0.0047 (17)	0.0112 (18)	0.0035 (16)
N2B	0.0162 (19)	0.0140 (19)	0.022 (2)	0.0025 (16)	0.0062 (16)	0.0010 (16)
N3B	0.023 (2)	0.013 (2)	0.031 (2)	0.0042 (17)	0.0123 (18)	-0.0022 (17)
C1B	0.025 (2)	0.016 (2)	0.022 (2)	0.0002 (19)	0.011 (2)	0.0015 (19)
C2B	0.021 (2)	0.015 (2)	0.024 (2)	0.0032 (19)	0.009 (2)	0.0004 (19)
C3B	0.025 (3)	0.015 (2)	0.028 (3)	-0.004 (2)	0.011 (2)	0.002 (2)
C4B	0.023 (2)	0.017 (2)	0.027 (2)	-0.002 (2)	0.012 (2)	0.000 (2)
C5B	0.019 (2)	0.018 (2)	0.019 (2)	0.0040 (19)	0.0082 (19)	0.0029 (19)
C6B	0.022 (2)	0.019 (3)	0.015 (2)	0.0032 (19)	0.0102 (19)	0.0037 (18)
C7B	0.023 (2)	0.013 (2)	0.027 (2)	0.0012 (19)	0.011 (2)	-0.0044 (19)
C8B	0.028 (3)	0.015 (2)	0.023 (2)	0.002 (2)	0.013 (2)	0.0004 (19)
C9B	0.037 (3)	0.021 (3)	0.035 (3)	-0.012 (2)	0.026 (2)	-0.012 (2)
C10B	0.018 (2)	0.038 (3)	0.021 (2)	0.010 (2)	0.008 (2)	0.008 (2)
C11B	0.025 (2)	0.016 (2)	0.021 (2)	0.006 (2)	0.012 (2)	0.0010 (18)

Acta Cryst. (2012). E68, o2303-o2304

supplementary materials

C12B	0.027 (2)	0.011 (2)	0.021 (2)	0.002 (2)	0.011 (2)	-0.0016 (18)
C13B	0.021 (2)	0.020(2)	0.022 (2)	-0.003(2)	0.009(2)	-0.003 (2)
O1WB	0.024 (2)	0.031 (2)	0.053 (3)	-0.0026 (17)	0.017 (2)	-0.022 (2)

Geometric	parameters	(Å,	9
-----------	------------	-----	---

Cl1A—C11A	1.754 (5)	Cl1B—C11B	1.751 (5)
O1A—C6A	1.228 (6)	O1B—C6B	1.229 (6)
N1A—C3A	1.336 (7)	N1B—C3B	1.335 (6)
N1A—C2A	1.345 (7)	N1B—C2B	1.346 (6)
N2A—C6A	1.351 (6)	N2B—C6B	1.355 (6)
N2A—N3A	1.385 (5)	N2B—N3B	1.384 (5)
N2A—H1NA	1.0006	N2B—H1NB	0.8938
N3A—C7A	1.286 (6)	N3B—C7B	1.286 (6)
C1A—C5A	1.385 (7)	C1B—C2B	1.386 (7)
C1A—C2A	1.396 (7)	C1B—C5B	1.398 (7)
C1A—H1AA	0.9500	C1B—H1BA	0.9500
C2A—H2AA	0.9500	C2B—H2BA	0.9500
C3A—C4A	1.385 (7)	C3B—C4B	1.368 (7)
СЗА—НЗАА	0.9500	C3B—H3BA	0.9500
C4A—C5A	1.388 (7)	C4B—C5B	1.384 (7)
C4A—H4AA	0.9500	C4B—H4BA	0.9500
C5A—C6A	1.508 (6)	C5B—C6B	1.495 (6)
C7A—C8A	1.460 (6)	C7B—C8B	1.475 (7)
С7А—Н7АА	0.9500	C7B—H7BA	0.9500
C8A—C13A	1.408 (7)	C8B—C13B	1.395 (7)
C8A—C9A	1.428 (7)	C8B—C9B	1.405 (7)
C9A—C10A	1.342 (7)	C9B—C10B	1.354 (8)
С9А—Н9АА	0.9500	C9B—H9BA	0.9500
C10A—C11A	1.390 (7)	C10B—C11B	1.391 (7)
C10A—H10A	0.9500	C10B—H10B	0.9500
C11A—C12A	1.396 (7)	C11B—C12B	1.383 (7)
C12A—C13A	1.379 (7)	C12B—C13B	1.389 (7)
C12A—H12A	0.9500	C12B—H12B	0.9500
C13A—H13A	0.9500	C13B—H13B	0.9500
O1WA—H1WA	0.89 (8)	O1WB—H1WB	0.81 (9)
O1WA—H2WA	0.86 (9)	O1WB—H2WB	0.73 (7)
C3A—N1A—C2A	117.1 (4)	C3B—N1B—C2B	116.9 (4)
C6A—N2A—N3A	118.6 (4)	C6B—N2B—N3B	116.8 (4)
C6A—N2A—H1NA	118.9	C6B—N2B—H1NB	115.7
N3A—N2A—H1NA	121.9	N3B—N2B—H1NB	127.6
C7A—N3A—N2A	114.9 (4)	C7B—N3B—N2B	116.2 (4)
C5A—C1A—C2A	118.4 (5)	C2B—C1B—C5B	119.0 (4)
C5A—C1A—H1AA	120.8	C2B—C1B—H1BA	120.5
C2A—C1A—H1AA	120.8	C5B—C1B—H1BA	120.5
N1A—C2A—C1A	123.1 (5)	N1B—C2B—C1B	122.7 (4)
N1A—C2A—H2AA	118.5	N1B—C2B—H2BA	118.7
C1A—C2A—H2AA	118.5	C1B—C2B—H2BA	118.7
N1A—C3A—C4A	124.0 (5)	N1B-C3B-C4B	124.6 (4)

N1A—C3A—H3AA	118.0	N1B—C3B—H3BA	117.7
С4А—С3А—НЗАА	118.0	С4В—С3В—Н3ВА	117.7
C3A—C4A—C5A	118.2 (5)	C3B—C4B—C5B	118.6 (4)
СЗА—С4А—Н4АА	120.9	СЗВ—С4В—Н4ВА	120.7
С5А—С4А—Н4АА	120.9	C5B—C4B—H4BA	120.7
C1A—C5A—C4A	119.1 (4)	C4B—C5B—C1B	118.2 (4)
C1A—C5A—C6A	124.6 (4)	C4B—C5B—C6B	119.1 (4)
C4A—C5A—C6A	116.4 (4)	C1B—C5B—C6B	122.7 (4)
O1A—C6A—N2A	123.9 (4)	O1B—C6B—N2B	123.9 (4)
O1A—C6A—C5A	120.7 (4)	O1B—C6B—C5B	120.0 (4)
N2A—C6A—C5A	115.3 (4)	N2B—C6B—C5B	116.1 (4)
N3A—C7A—C8A	121.0 (4)	N3B—C7B—C8B	119.2 (4)
N3A—C7A—H7AA	119.5	N3B—C7B—H7BA	120.4
С8А—С7А—Н7АА	119.5	C8B—C7B—H7BA	120.4
C13A—C8A—C9A	117.1 (4)	C13B—C8B—C9B	118.3 (5)
C13A—C8A—C7A	119.1 (4)	C13B—C8B—C7B	120.5 (4)
C9A—C8A—C7A	123.8 (4)	C9B—C8B—C7B	121.1 (4)
C10A—C9A—C8A	121.8 (4)	C10B—C9B—C8B	121.6 (5)
C10A—C9A—H9AA	119.1	C10B—C9B—H9BA	119.2
C8A—C9A—H9AA	119.1	C8B—C9B—H9BA	119.2
C9A-C10A-C11A	119.4 (5)	C9B-C10B-C11B	119.0 (4)
C9A - C10A - H10A	120.3	C9B-C10B-H10B	120.5
C11A - C10A - H10A	120.3	C11B $C10B$ $H10B$	120.5
C10A— $C11A$ — $C12A$	121.8 (4)	C12B— $C11B$ — $C10B$	121.6 (4)
C10A - C11A - C11A	119.1 (4)	C12B— $C11B$ — $C11B$	119.4 (4)
C12A— $C11A$ — $C11A$	119.1 (3)	C10B— $C11B$ — $C11B$	119.1 (4)
C13A - C12A - C11A	118.1 (4)	C11B— $C12B$ — $C13B$	118.7 (4)
C13A - C12A - H12A	120.9	C11B— $C12B$ — $H12B$	120.7
C11A—C12A—H12A	120.9	C13B— $C12B$ — $H12B$	120.7
C12A—C13A—C8A	121.7 (4)	C12B— $C13B$ — $C8B$	120.7 (4)
C12A—C13A—H13A	119.1	C12B—C13B—H13B	119.6
C8A-C13A-H13A	119.1	C8B-C13B-H13B	119.6
H1WA—O1WA—H2WA	114 (8)	H1WB—O1WB—H2WB	111 (8)
			(0)
C6A—N2A—N3A—C7A	-178.2 (4)	C6B—N2B—N3B—C7B	-176.3 (4)
C3A—N1A—C2A—C1A	-2.4 (7)	C3B—N1B—C2B—C1B	-0.6 (7)
C5A—C1A—C2A—N1A	1.4 (7)	C5B—C1B—C2B—N1B	0.4 (7)
C2A—N1A—C3A—C4A	0.6 (7)	C2B—N1B—C3B—C4B	0.2 (7)
N1A—C3A—C4A—C5A	2.1 (7)	N1B—C3B—C4B—C5B	0.3 (8)
C2A—C1A—C5A—C4A	1.3 (7)	C3B—C4B—C5B—C1B	-0.5 (7)
C2A—C1A—C5A—C6A	-179.1 (4)	C3B—C4B—C5B—C6B	-178.7 (4)
C3A—C4A—C5A—C1A	-3.0 (7)	C2B—C1B—C5B—C4B	0.1 (7)
C3A—C4A—C5A—C6A	177.4 (4)	C2B—C1B—C5B—C6B	178.2 (4)
N3A—N2A—C6A—O1A	-0.6 (7)	N3B—N2B—C6B—O1B	0.4 (7)
N3A—N2A—C6A—C5A	177.3 (4)	N3B—N2B—C6B—C5B	179.6 (4)
C1A—C5A—C6A—O1A	-155.3 (4)	C4B—C5B—C6B—O1B	24.6 (7)
C4A—C5A—C6A—O1A	24.3 (6)	C1BC5BC6BO1B	-153.5 (5)
C1A—C5A—C6A—N2A	26.7 (6)	C4B—C5B—C6B—N2B	-154.6 (4)
C4A—C5A—C6A—N2A	-153.8 (4)	C1B—C5B—C6B—N2B	27.3 (6)

	-170.6(4)	N2P N2P C7P C8P	-178.0(4)
NZA-NJA-C/A-COA	1/9.0 (4)	N2D—N3D—C/D—CoD	1/8.9 (4)
N3A—C7A—C8A—C13A	176.6 (4)	N3B—C7B—C8B—C13B	169.7 (4)
N3A—C7A—C8A—C9A	-3.9 (7)	N3B—C7B—C8B—C9B	-8.5 (7)
C13A—C8A—C9A—C10A	-0.3 (7)	C13B—C8B—C9B—C10B	-1.5 (7)
C7A—C8A—C9A—C10A	-179.8 (4)	C7B-C8B-C9B-C10B	176.7 (4)
C8A—C9A—C10A—C11A	-0.1 (7)	C8B—C9B—C10B—C11B	0.1 (7)
C9A—C10A—C11A—C12A	0.2 (7)	C9B-C10B-C11B-C12B	1.6 (7)
C9A—C10A—C11A—C11A	178.8 (4)	C9B-C10B-C11B-C11B	-178.5 (4)
C10A—C11A—C12A—C13A	0.1 (7)	C10B—C11B—C12B—C13B	-1.9 (7)
Cl1A—C11A—C12A—C13A	-178.5 (4)	Cl1B—C11B—C12B—C13B	178.2 (4)
C11A—C12A—C13A—C8A	-0.5 (7)	C11B—C12B—C13B—C8B	0.4 (7)
C9A—C8A—C13A—C12A	0.6 (7)	C9B-C8B-C13B-C12B	1.2 (7)
C7A—C8A—C13A—C12A	-179.9 (5)	C7B—C8B—C13B—C12B	-177.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D··· A	D—H···A
N2A—H1NA····O1WA	1.00	1.88	2.838 (7)	160
$N2B$ — $H1NB$ ····O1 WB^{i}	0.89	1.95	2.810(7)	161
O1 <i>WA</i> —H1 <i>WA</i> ···N1A ⁱⁱ	0.88 (9)	2.14 (8)	2.896 (7)	144 (6)
$O1WA$ — $H2WA$ ···O $1B^{iii}$	0.86 (10)	2.05 (9)	2.817 (6)	149 (9)
O1WA— $H2WA$ ··· $N3B$ ⁱⁱⁱ	0.86 (10)	2.59 (10)	3.306 (6)	142 (8)
$O1WB$ — $H2WB$ ···O $1A^{iv}$	0.73 (9)	2.19 (8)	2.843 (6)	150 (8)
$O1WB$ — $H1WB$ ···· $N1B^{iv}$	0.81 (9)	2.00 (9)	2.798 (6)	166 (11)
C1 <i>A</i> —H1 <i>AA</i> ···O1 <i>WA</i>	0.95	2.49	3.321 (6)	146
C1 <i>A</i> —H1 <i>AA</i> ···O1 <i>B</i> ⁱⁱⁱ	0.95	2.54	3.277 (7)	135
C7A—H7AA…O1WA	0.95	2.46	3.247 (7)	141
$C1B$ — $H1BA$ ···O1 WB^{i}	0.95	2.43	3.201 (7)	138
$C1B$ — $H1BA$ ···O $1A^{v}$	0.95	2.52	3.230 (8)	131

Symmetry codes: (i) x-1, y, z; (ii) -x+1, y+1/2, -z+3/2; (iii) -x+1, -y+1, -z+2; (iv) -x+1, y-1/2, -z+3/2; (v) -x, y-1/2, -z+3/2.